

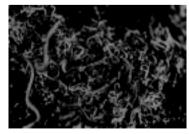
- Was ist Bodenleben?
- Bodenleben, Bodenfunktionen und Mikronährstoffe
- Essenzielle Nährstoffe für Bodenorganismen
- Mikronährstoffe und Enzymaktivitäten
- Mikronährstoffgehalte im Boden und Aktivität von Mikroorganismen
- Mikronährstoffbedarf und Stickstoff-Stoffwechsel
- Zusammenfassung und Fazit

Informationstag Mikronährstoffe am 25. November 2004

"Bodenleben und Mikronährstoffe"

Lehrstuhl f. Angewandte Zoologie TU München

www.nua.nrw.de


www.wsl.ch

/www.gutach.de

Was ist Bodenleben?

Der Begriff Bodenleben (Bodenbiozönose, Edaphon) bezeichnet die Gesamtheit der zwischen Erdoberfläche und dem tief liegendem Gestein lebenden Organismen.

www.regenwurm.de

www.wsl.ch

www.altgarden.com

Informationstag Mikronährstoffe am 25. November 2004

"Bodenleben und Mikronährstoffe"

Klassifizierung des Bodenlebens nach Individuengröße und Bedeutung für die Mikronährstoffversorgung

Größenklasse	Individuengröße	Organismen	
Megafauna	> 2 cm	Große Regenwürmer	
Makrofauna	2 mm bis 2 cm	Schnecken, kleine Regenwürmer, Asseln, Doppelfüßer	
Mesofauna	0,2 – 2 mm	Käfer, Milben, Fadenwürmer, Enchytraeiden, Springschwänze, Rädertiere	
Mikrofauna	20 – 200 μm	Protozoen	
Mikroflora	< 50 μm	Algen, Pilze, Bakterien	

Wodurch wird Bodenleben beeinflusst?

Natürliche Faktoren

- geographische Lage
- Klima

Bodenphysikalische Faktoren

- Bodentextur
- Bodenfeuchte
- Bodentemperatur

Bodenchemische Faktoren

- C/N-Verhältnis
- pH-Wert
- Mineralstoffe
- Kationenaustauschkapazität

Anthropogene Faktoren

- Bodenbearbeitung
- Pflanzenschutzmittel
- Düngung
- Bodenverunreinigung

Biologische Faktoren

- Vegetation
- Ökosystemtyp

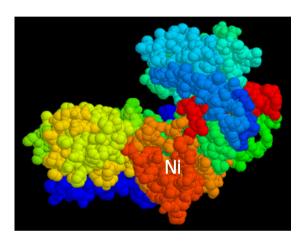
Bodenleben, Bodenfunktionen und Mikronährstoffe

Abbau der Streu in organische und anorganische (z.B. Mikronährstoffe) Komponenten.

Essenzielle Nährstoffe für Bodenorganismen

Makronährstoffe

C, H, O, N, P, S, K, Mg, Na, Ca, Fe


Mikronährstoffe

B, Cl, Co, Cu, Mn, Mo, Ni, Se, W, V, Zn

Organische Verbindungen Vitamine, Aminosäuren, Purine, Pyrimidine

Mikronährstoffe und Enzymaktivitäten

http://www.biologie.uni-hamburg.de/b-online/fi18/2yhx.gif

- Mikronährstoffe sind als Baustein in rund der Hälfte der Mikroorganismen vorkommenden Enzyme vorhanden.
- Mikronährstoffe wirken stabilisierend auf die Enzymstruktur.
- Mikronährstoffe ermöglichen die Substratbindung.

Mikronährstoffe und Enzymaktivitäten

Mikronährstoff	Enzym	Aufgabe	
Ni	Urease	Hydrolytische Spaltung von	
		Harnstoff in NH ₃ u. CO ₂	
	CO-Dehydrogenase (anaerob)	Oxidation von CO→CO ₂	
Mo	CO-Dehydrogenase (aerob)		
Fe	Cytochrom	Elektronentransport / Atmung	
Fe, Cu	Cytochrom-Oxidase		
Mg	Bakteriochlorophyll	Mg im Porphyrinringsystem	
Fe, Mn, Cu,	Superoxid-Dismutase	Schutz	
Zn			
Va, Fe, Mo	Nitrogenase	N ₂ -Fixierung	
Co	Proteasen, Lipasen	Zentralatom im Vitamin B ₁₂	
W	Formiat-Dehydrogenase	Fermentativer Stoffwechsel	
Se	Formiat-Dehydrogenase	Fermentativer Stoffwechsel	

Mikronährstoffgehalte im Boden und Aktivität von Mikroorganismen

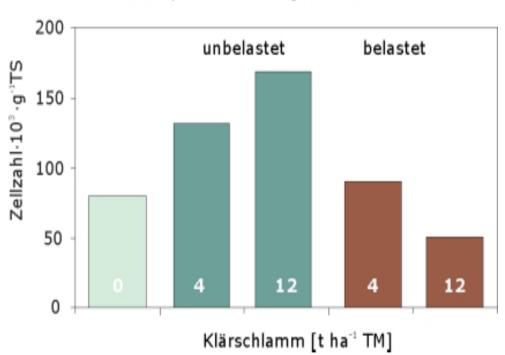
- Der Mikronährstoffbedarf des Bodenlebens ist sehr gering und wird über die natürlichen Bodenvorräte gedeckt.
- Der Mikronährstoffbedarf des Bodenlebens ist organismenspezifisch.
- Toleranz- und Toxizitätsbereiche einzelner Individuen überschneiden sich. Bakterien reagieren z.B. empfindlicher auf hohe Cu-Gehalte im Boden als Pilze.
- Bei Regenwürmern sind ab 100 mg kg⁻¹ Cu Effekte erkennbar.
- Bei Collembolen sind ab 200 mg kg⁻¹Cu Effekte erkennbar.

Mikronährstoffgehalte im Boden und Aktivität von Mikroorganismen


- Mikroorganismen werden durch hohe Konzentrationen an Schwermetallen geschädigt:
 - Hg > Cr, Mo, Co, Cd, Cu, (U) > Ni, Pb, Zn
- Die Toxizität der Schwermetalle ist sehr stark vom Element und der verfügbaren Konzentration im Boden abhängig.
- Schwermetalle beeinträchtigen Enzymaktivitäten und die Erbsubstanz.

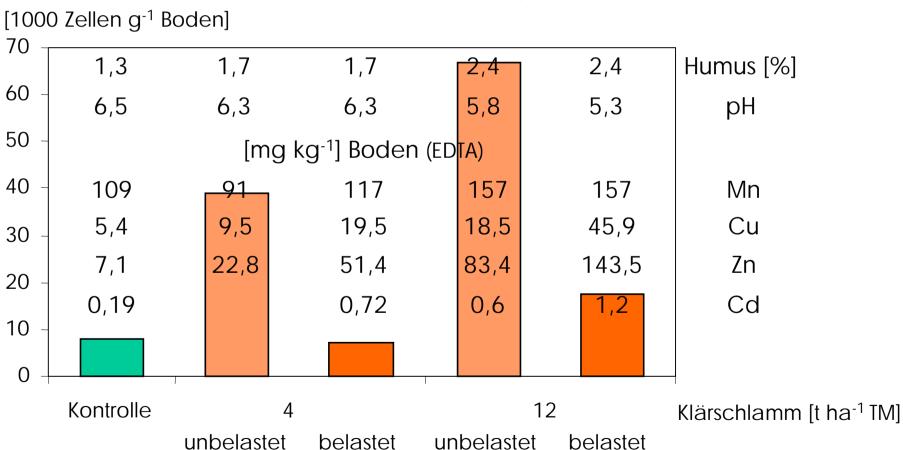
Einfluss des Schwermetalls Uran im Boden auf die mikrobielle Besiedelung

Actinomyceten



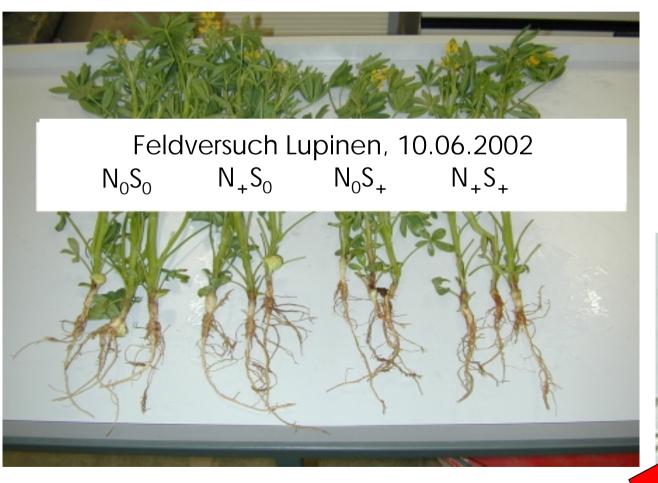
Pilze

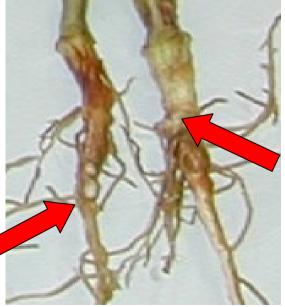
Einfluss langjähriger Klärschlamm-Applikationen auf die Anzahl cellulolytischer Mikroorganismen


Cellulolytische Mikroorganismen

Klär- schlamm-	Bodengehalte 13 Jahre nach letztmaliger Behandlung				
Menge	Cd	Cr	Ni	Pb	
t ha ⁻¹ a ⁻¹	Gesamtgehalt [mg kg ⁻¹]				
0	0,17	11	6	27	
4	0,24	13	7	31	
12	0,51	19	10	34	
4	0,65	28	10	45	
12	1,48	58	19	65	

Wirkung von Mikronährstoffen und Schwermetallen auf die Zellzahl von Bodenpilzen im Oberboden (FV1, 2003)




Mikronährstoffe und Stickstoff-Stoffwechsel

- Kobalt ist u.a. essenziell für die Stickstoffbindung durch Rhizobien in Leguminosen, und freilebende N-Fixierer wie Azotobacter, Azomonas, Azospirillum, Beijerinckia, Derxia.
- Die Vitamin B12 Synthese steht in direkter Beziehung zur Kobaltversorgung des Bodens.

Lupinen mit Wurzelknöllchen

Mikronährstoffe und Stickstoff-Stoffwechsel

- Die Stickstoff-Fixierung erfolgt durch den Nitrogenase-Enzymkomplex:
 Nitrogenase (Mo) und Nitrogenase-Reduktase (Fe, Mo).
- Das FeMo-Koenzym (FeMo-Co) oder MoFe₇S₈-Homocitrat bindet und spaltet N₂.
- Da Nitrogenase empfindlich auf Sauerstoff reagiert, werden Leghämoglobin (Fe) und Hydrogenase (Ni) zur O₂-Bindung benötigt.
- Bei Mo-Mangel kann Mo in Nitrogenasen durch Vanadium/Eisen substituiert werden.

Zusammenfassung und Fazit

- Mikronährstoffe können in Abhängigkeit von der Konzentration fördernd oder hemmend auf das Bodenleben wirken.
- Das Bodenleben braucht, von sehr wenigen Ausnahmefällen abgesehen, keine Mikronährstoff-Düngung.
- Die Zufuhr von Schwermetallen beeinflusst das Artenspektrum (Biodiversität), die Reproduktion und die Individuenhäufigkeiten (Abundanzen).
- Die Zufuhr von Schwermetallen beeinträchtigt dosisabhängig Indikatoren der Leistungsfähigkeit des Bodenlebens (Enzymaktivitäten, Atmung).

Informationstag Mikronährstoffe am 25. November 2004

"Bodenleben und Mikronährstoffe"

Vielen Dank für Ihre Aufmerksamkeit.