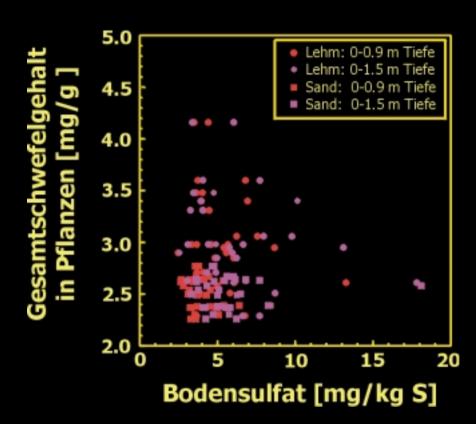
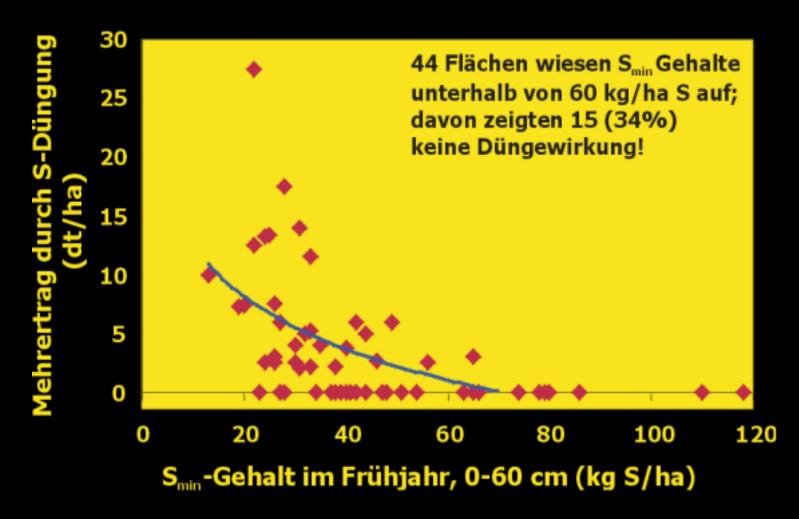


Wie läßt sich die Nährstoffversorgung eines Bodens ermitteln?


- Visuelle Diagnose von Mangelsymptomen im Bestand
- Bodenanalyse
- Pflanzenanalyse
- Bilanzierung der Ein- und Austräge
- Modellierung der Versorgungssituation

Ist die Bodenanalyse zur Bestimmung der S-Versorgung geeignet?

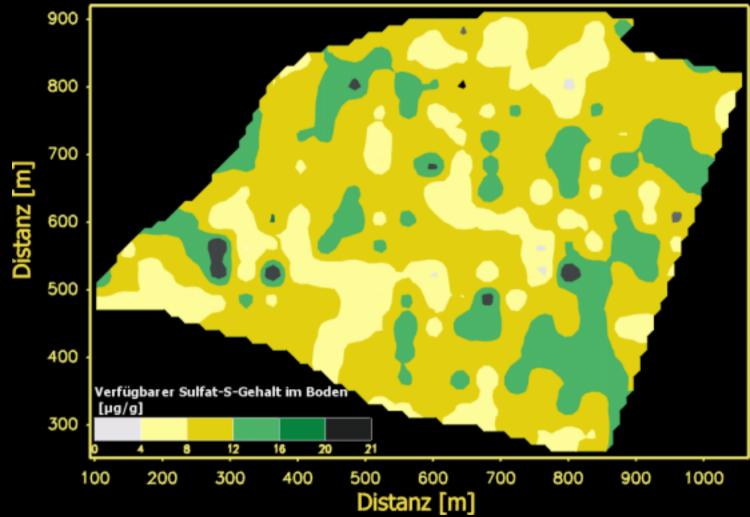


Sollwert S_{min}: 60 kg S/ha in 0-60 cm für Raps

Beziehung zwischen dem Gesamtschwefelgehalt in der Pflanze und dem Bodensulfatgehalt

Beziehung zwischen dem S_{min}-Gehalt im Boden und dem Mehrertrag der durch S-Düngung bei Winterraps erzielt wurde (nach Link, 1997).

Warum die Bodenanalyse nicht zur Bestimmung der S-Versorgung geeignet ist:


Ursache:

Sulfat verhält sich in landwirtschaftlichen Böden mit pH-Werten oberhalb von 5 hochmobil und folgt der Wasserbewegung im Boden!

Problem:

- ! hohe Mobilität des Bodensulfats
- ! hohe räumliche Variabilität des SO₄-S
- ! hohe zeitliche Variabilität des SO₄-S

Räumliche Variabilität der Sulfatschwefelgehalte im Oberboden (Schnug & Haneklaus, 1998)

Fazit:

Die Bodenanalyse ist aufgrund der hohen Mobilität des Bodensulfats und der dadurch bedingten hohen räumlichen und zeitlichen Variabilität nicht geeignet, die Schwefelversorgung eines Standortes sicher zu ermitteln.

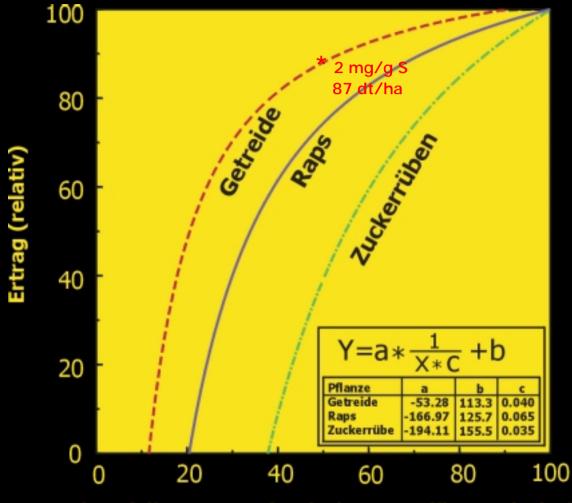
Ist die Pflanzenanalyse zur Bestimmung der S-Versorgung geeignet? Methoden:

Gesamt-S im vegetativen Pflanzenmaterial

Nachteile:

- Pflanzenorgan
- Probenahmezeitpunkt
- mögliche Blattkontaminationen
- kurzer Zeitraum für Probenahme, Analyse + Düngung

N/S Verhältnis


Nachteile: - Bestimmung von 2 Elementen notwendig

- Unterschiedliche Gewebekonz. bedingen u.U. gleiches Verhältnis
- Überschuß z.B. von N kann fälschlich als S-Mangel gedeutet werden
- Pflanzen mit sek. S-haltigen Metaboliten weisen abweichendes N:S auf

Sulfatschwefelgehalt

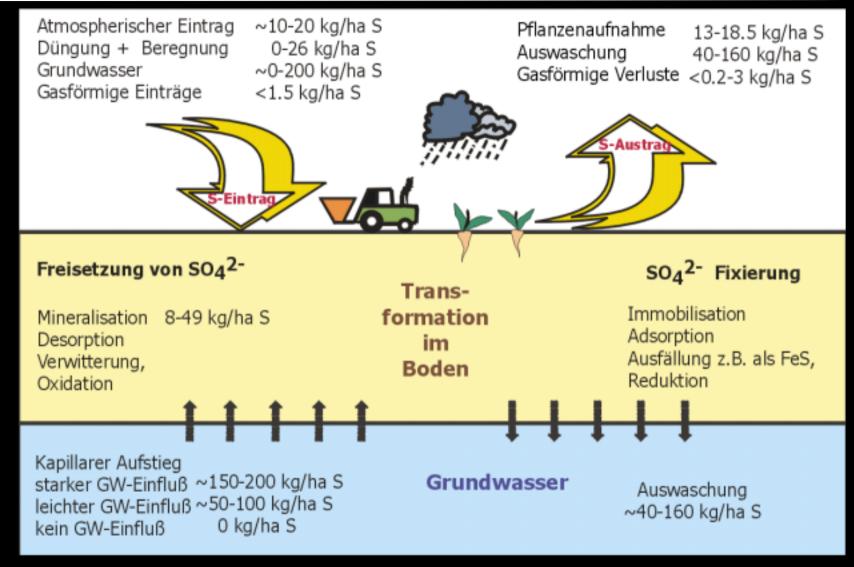
- Nachteile: SO₄ ändert sich je nach physiol. Aktivität
 - N-Mangel bedingt SO₄ Konzentrationsanstieg
 - bei Pflanzen mit sek. S-haltigen Metaboliten wie den GSL wird nach der Ernte Sulfat durch Abbauprozesse freigesetzt.

Schwefelkonzentration in jungen Blättern (relativ)

Ertragsfunktion für Getreide, Raps und Zuckerrübe (Schnug & Haneklaus, 1998)

Fazit:

Die Pflanzenanalyse mit der Bestimmung des Gesamt-S ist bei sorgfältiger Beprobung gut geeignet die Schwefelversorgung eines Bestandes zu charakterisieren. Sie ist aber zeitlich problematisch und daher nicht zur Düngebedarfsermittlung zu empfehlen.



Ist die Bilanzierung zur Bestimmung der S-Versorgung geeignet?

Bei der Bilanzierung werden Schwefelein- und austräge einander gegenübergestellt und bei negativer Bilanz erfolgt eine Ausgleichsdüngung.

Schwefel-Informationstag der FAL "Schwefelversorgung bestimmen"

Parameter der Schwefel- Bilanz

Schwefelbilanz eines Winterweizenstandortes

- Vergleich Feld-Stallbilanz, klassische und korrigierten S-Bilanz - (*n.b.= nicht berücksichtigt)

	Feld- Stallbilanz [kg/ha S]	Traditionelle S-Bilanz [kg/ha S]	Korrigierte S-Bilanz [kg/ha S]
S-Einträge:			
Atmosphäre	n.b.*	18	18
Nettomineralisation	n.b.*	33	33
Düngung, Beregnung	0	0	0
Grundwasser, kap. Aufstieg	n.b.*	n.b.*	141
Summe	0	51	192
S-Austräge:			
Pflanzenaufnahme	21	42	42
Auswaschung	n.b.*	131	131
Summe	21	173	173
Bilanz	-21	-122	+19

Fazit:

Die Bilanzierung der Schwefeleinund austräge ist nur dann geeignet, die Schwefelversorgung eines Standortes zu ermitteln, wenn auch die Bodenhydrologie berücksichtigt wird.

Ist die Modellierung zur Bestimmung der S-Versorgung geeignet?

Vorhandene Modelle:

- Schwefelschätzrahmen der BASF
- ! BUNDESMOPS der FAL
- weitere computergestützte Modelle

Schwefel-Informationstag der FAL "Schwefelversorgung bestimmen"

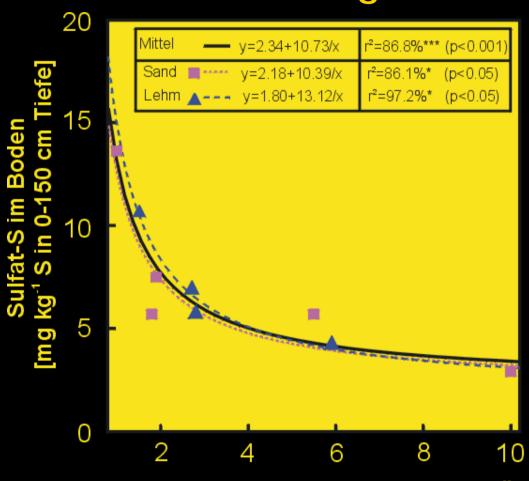
Schätzrahmen für die Notwendigkeit einer S-Düngung

Schwefel-Informationstag der FAL "Schwefelversorgung bestimmen"

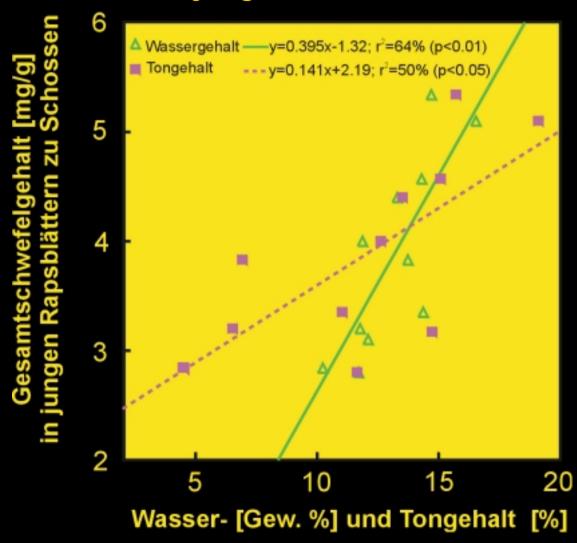
BEWIRTSCHAFTUNG Schwefelzehrende Kulturen in der Fruchtfolge (Raps, Kohlarten, Leguminosen)	Anbau jedes 3. Jahr 2	Anbau jedes 4. Jahr	Anbau mind. jedes 5. Jahr	2		
In diesem Jahr angebaute Kultur	Raps, Kohl, Leguminosen	Andere Kulturen		1		
Schwefelmangel bereits aufgetreten (Ertragseinbußen, Blattanalyse, Mangelsymptome)	Ja 1	Nein oder unbekannt 3		3		
Ertragsniveau (dt/ha) Raps 1) > 35 2) 25 - 35 3) < 25 Getreide 1) > 70 2) 50 - 70 3) < 50	Hoch ¹⁾	Mittel ²	Niedrig ³⁾	2		
Zwischenfruchtanbau	Nein 2	Ja 4		2		
DÜNGUNG Einsatz organischer Dünger aus Tierhaltung (keine Gründüngung)	0 – 1 GV/ha 2	1 – 2 GV/ha	> 2 GV/ha	2.		
In den letzten 3 Jahren Einsatz von Mineraldüngern mit nennens- werten Schwefel-Gehalten (z.B. AS, ASS, 13+9+16+4, Superphosphat, Kalisulfat)	Nein 2	Ja 4		2.		-
25 – 32 Punkte: Wahrscheinlichkeit vo 33 – 38 Punkte: Bestände (besonders 39 – 60 Punkte: Schwefelmangel zur Z	Raps) genau beobac	chten, Düngung mit		34 Summe d	er Punk	tzahlen

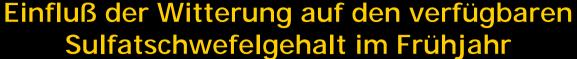
Problem

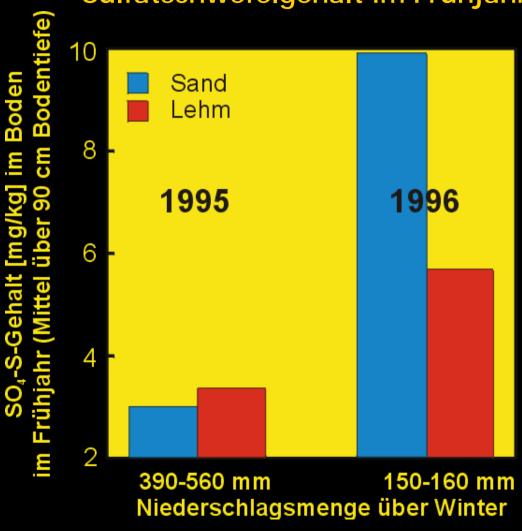
Der Schwefelschätzrahmen vernachlässigt die Bodenhydrologie, wird also systematisch zu falschen Düngeempfehlungen führen.


Grundlagen des MOdells zu Prognose von Schwefelmangel der FAL

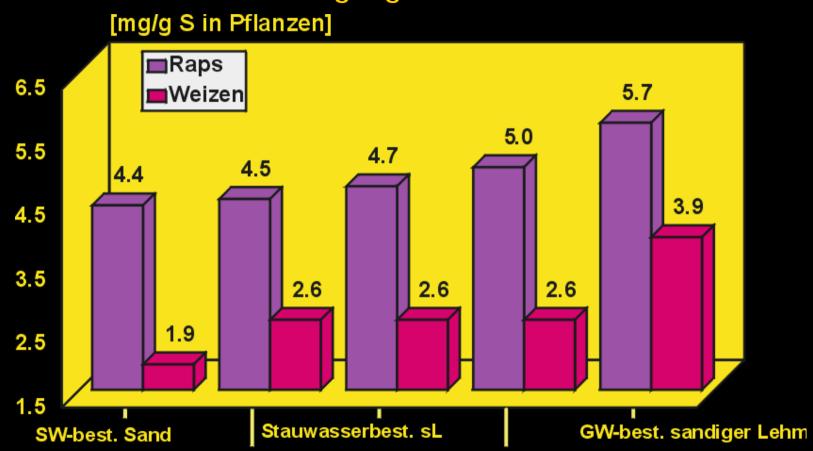
- ! Grundwasser
- ! Textur
- ! Witterung
- weitere Faktoren (Bedarf der Kultur, Beregnung, Düngung, Vorjahresdüngung usw.)

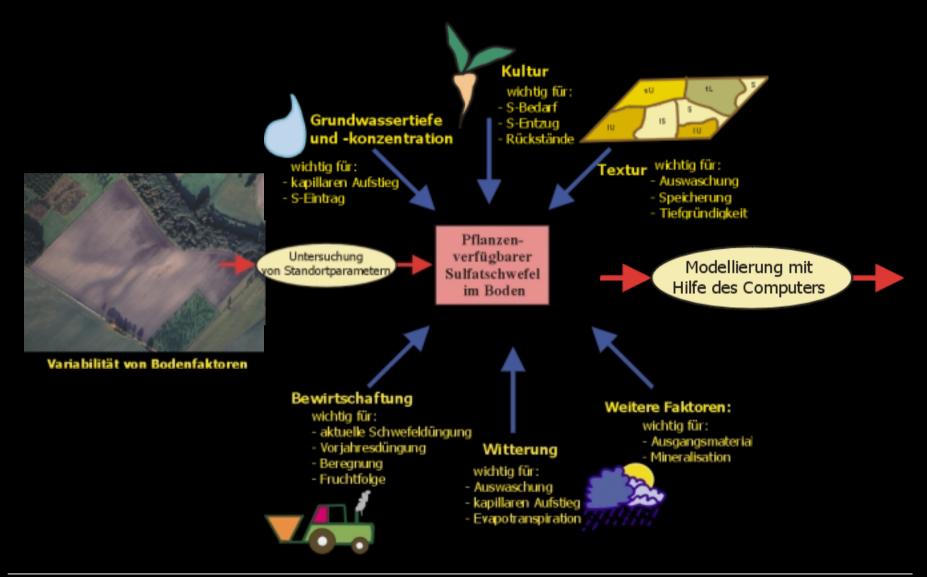

Einfluß des Grundwasserstandes auf die Bodensulfatgehalte


Grundwasserstand [m unter der Oberfläche]

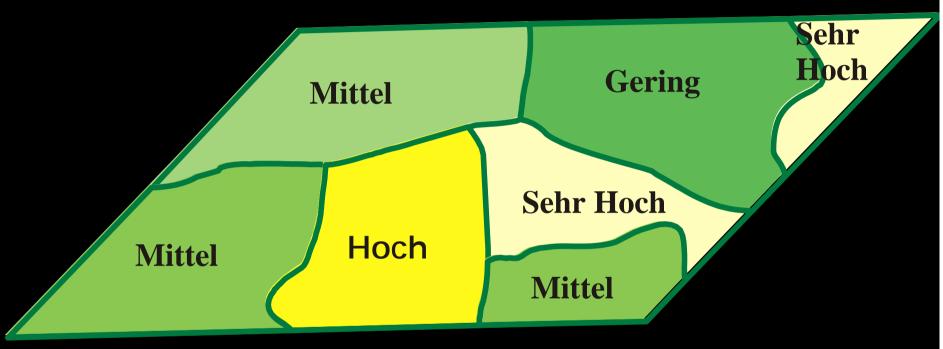


Einfluß von Ton- und Wassergehalt (in 60-150 cm Tiefe) auf die Gesamt-S-Gehalte in jungen, ausdifferenzierten Rapsblättern




Eignung von Standortfaktoren zur Bestimmung der S-Versorgung am Standort

SW-best. sandiger Lehm Stauwasserbest. Lehm



BUNDESMOPS

Ergebnis:

S-Mangel-Risikokarte (Maßstab 1:5 000 bis 1:50 000)

Fazit:

Ein Modell wie der Bundesmops bietet erhebliche Vorteile gegenüber den anderen Methoden, die alle mit erheblichen Problemen behaftet sind. Der Bundesmops erlaubt eine frühzeitige Einschätzung der S-Versorgung und stellt damit eine schnelle Entscheidungshilfe für die S-Düngung dar und macht darüber hinaus aufwendige und teure Analysen überflüssig.